The Crystal and Molecular Structure of Bis-(2-thioimidazolidine)-nickel(II) Thiocyanate

By Mario Nardelli, Giovanna Fava Gasparri, Amos Musatti and Amelia Manfredotti

Istituto di Strutturistica Chimica della Università degli Studi, Parma, Italy

(Received 5 April 1966)

The crystal structure of bis-(2-thioimidazolidine)nickel thiocyanate, Ni[SC(NHCH₂)₂]₂(NCS)₂, has been determined and refined by three-dimensional Fourier methods (final $R = 11 \cdot 6 \%$). There is one formula unit in the triclinic (*P* I) unit cell: $a = 5 \cdot 592(21)$, $b = 8 \cdot 664(18)$, $c = 8 \cdot 686(22)$ Å, $\alpha = 113^{\circ} 39'(7')$, $\beta = 95^{\circ} 8'(7')$, $\gamma = 108^{\circ} 43'(6')$. Each nickel atom is octahedrally surrounded by two sulphur atoms (Ni-S 2.51 Å) from two thioimidazolidine molecules, and by two sulphur atoms (Ni-S 2.54 Å) and two nitrogen atoms (Ni-N 1.99 Å) from four different NCS groups. These nitrogen atoms are *trans* with respect to the plane of the sulphur atoms. The octahedra are linked in zigzag chains by the NCS groups, which form bridges between adjacent nickel atoms. The thioimidazolidine molecule is not strictly planar, the two CH₂ groups being shifted by ~0.1 Å on opposite sides of the plane of the thiourea part of the molecule. The infrared C-S and C-N stretching frequencies of bridged NCS groups in some thioimidazolidine-metal complexes are compared.

Introduction

The structure of bis-(2-thioimidazolidine)-nickel thiocyanate, Nietu₂(NCS)₂ [etu = 2-thioimidazolidine = ethylenethiourea = $SC(NHCH_2)_2$ has been investigated as part of a programme for studying metal complexes of ligands containing sulphur as donor atom. The principal aim of the research was the comparison of this structure with those of the similar thiourea complex, $Nitu_2(NCS)_2 [tu = thiourea = SC(NH_2)_2]$ (Nardelli, Fava Gasparri, Giraldi Battistini & Domiano, 1966; hereafter quoted as NFGD) and thioacetamide complex, Nitam₂(NCS)₂ [tam = thioacetamide = $SC(CH_3)$ -NH₂] (research in progress). All these compounds are polymeric in nature with chains of coordination octahedra, but, while sulphur bridges are present in the thiourea complex, bridging is due to the NCS groups in the other compounds. This comparison is useful in studying the influence of the nature of the ligands on the behaviour of the NCS group: the coordination polyhedron and the number of thiocyanate groups are unchanged in all these compounds.

Experimental

The crystals of Nietu₂(NCS)₂ used in the present work were those already described by Nardelli & Chierici (1958). Cell constants, remeasured and refined by a least-squares procedure on powder diffractometer data (Cu $K\alpha$, $\lambda = 1.5418$ Å), are as follows:

Ni[SC(NHCH₂)₂]₂(NCS)₂. $M = 379 \cdot 1$. $a = 5 \cdot 592 \pm 0.021$, $b = 8 \cdot 664 \pm 0.018$, $c = 8 \cdot 686 \pm 0.022$ Å, $\alpha = 113^{\circ} 39' \pm 7'$, $\beta = 95^{\circ} 8' \pm 7'$, $\gamma = 108^{\circ} 43' \pm 6'$. $V = 353 \cdot 4$ Å³, Z = 1, $D_x = 1 \cdot 781$, $D_m = 1 \cdot 77$ g.cm⁻³ (flotation). $\mu = 72 \cdot 8$ cm⁻¹ (Cu K α).

Space group $P\bar{1}$ (by structure analysis).

Three-dimensional intensity data were recorded in the usual way on multiple-film Weissenberg photographs, using integration and equi-inclination techniques with Cu $K\alpha$ radiation, and the intensities were measured photometrically. Layers 0kl to 5kl were recorded about the *a* axis. Of the 1631 possible independent reflexions within the Cu $K\alpha$ sphere, 1449 were recorded; of these, 244 were too weak to be estimated. The shape of the spots of non-equatorial layers was taken into account following Phillips (1956) and in the correction for absorption the sample was treated as spherical ($\bar{r} = 0.025$ cm). The structure factors were derived by the usual formulae, the absolute scale being established for each layer separately first by Wilson's method, then by correlation with the calculated values.

Structure analysis and refinement

The structure was solved directly, assuming all the structure factors to be positive in the first Fourier calculation. This implied the assumption of the space group PI with the choice of origin at the Ni atom, which is heavy enough to dominate the majority of the signs. In this way the S atoms were located first and all the other atoms were located in successive calculations.

The refinement was carried out in the $P\bar{1}$ space group by means of Booth's differential syntheses with anisotropic thermal parameters. These parameters were derived from the second derivatives of the electron-density from differential synthesis, following the method of Nardelli & Fava (1960). At the end of this refinement, the ratios $r(x) = \sigma(x)/\varepsilon(x)$ between the e.s.d.'s and the shifts of the coordinates were as shown in Table 1 and the agreement indices (*R*, for observed reflexions only; *R'* assuming $F_o = \frac{1}{2}F_{\min}$ when $F_c > F_{\min}$ for unobserved reflexions; multiplicities not considered) were: R =11.6%, R' = 13.0%. An attempt to refine the structure in the P1 space group did not improve the R index and did not give interatomic distances significantly different from those obtained after the centrosymmetrical refinement.

The final coordinates with e.s.d.'s (Cruickshank, 1949) are given in Table 1; observed and calculated peak heights and curvatures, with the e.s.d.'s of electron-density and second derivatives, are reported in Table 2. As a consequence of the scaling by layers, the thermal parameters B_{ij} listed in Table 1 must be considered simply as additional parameters introduced to reduce the residuals. The F_c values reported in Table 3 are calculated with the final parameters of Table 1 using the scattering factors of Thomas & Umeda (1957) for Ni²⁺, of Dawson (1960) for S and of Berghuis, Haanappel, Potters, Loopstra, MacGillavry & Veenendaal (1955) for N and C.

The standard deviations, quoted in the next section, are calculated from the formulae of Ahmed & Cruickshank (1953) for bond lengths and of Darlow (1960) for angles, the effects of errors in cell parameters being accounted for following Darlow & Cochran (1961).

Discussion

The coordination around each nickel atom is octahedral: the nickel is coordinated to two S(1) atoms from two thioimidazolidine molecules, and to two S(2)and two N(1) atoms from four different NCS groups. The octahedra are linked in zigzag chains, running parallel to [100], by NCS groups which form bridges between the nickel atoms as shown in Fig.1. This structure, which occurs also in the Mn- and Co-*etu*₂ thiocyanates (Nardelli & Chierici, 1958), is quite similar to that of the corresponding cadmium and lead complexes (Cavalca, Nardelli & Fava, 1960) although these last are not isostructural with the previous ones.

Distances in the coordination polyhedron are in fairly good agreement with those found in the octahedra of bisthiourea-nickel(II) thiocyanate (NFGD) (the e.s.d.'s quoted in parentheses are in units of the last place):

$Nietu_2(NCS)_2$	$Nitu_2(NCS)_2$
Ni-S(1) 2.507(8) Å	$\sum_{n=1}^{\infty} (2.531(6) \text{ Å})$
Ni-S(2') 2·544(14)	1 - 3 = 2.564(9)
Ni-N(1) 1.992(23)	Ni-N 1·992(7)

Table 1. Final atomic fractional coordinates ($\times 10^4$), thermal parameters ($\times 10$ Å²) with e.s.d.'s and ratios (e.s.d.)/(coordinate shift)

	$x/a(\sigma)$	$y/b(\sigma)$	$z/c(\sigma)$	$B_{11}(\sigma)$	$B_{22}(\sigma)$	$B_{33}(\sigma)$	$B_{23}(\sigma)$	$B_{13}(\sigma)$	$B_{12}(\sigma)$	r(x)	r(y)	r(z)
Ni	0	0	0	50 (2)	35 (3)	37 (3)	14 (3)	16 (3)	17 (3)	∞	∞	∞
S(1)	2574 (8)	2267 (5)	3053 (5)	42 (2)	33 (2)	25 (2)	5 (2)	13 (2)	6 (2)	17	28	∞
S(2)	6542 (8)	- 2221 (6)	662 (6)	41 (2)	27 (2)	30 (2)	13 (2)	14 (2)	14 (2)	87	5	28
N(1)	2226 (29)	-1385 (22)	32 (21)	37 (5)	22 (7)	36 (8)	13 (9)	14 (9)	10 (8)	37	7	43
N(2)	1820 (37)	4011 (19)	6151 (23)	64 (8)	35 (7)	27 (8)	2 (9)	21 (10)	1 (9)	16	∞	12
N(3)	- 1484 (34)	1515 (21)	4463 (22)	57 (7)	48 (9)	28 (9)	9 (11)	20 (11)	7 (11)	∞	7	57
C(1)	- 2303 (45)	2124 (27)	6057 (26)	61 (9)	37 (9)	24 (9)	4 (11)	21 (12)	11 (12)	58	35	15
C(2)	-123 (44)	4007 (26)	7204 (26)	63 (11)	37 (10)	30 (10)	12 (12)	22 (13)	21 (14)	76	16	67
C(3)	880 (32)	2608 (21)	4605 (19)	50 (6)	22 (7)	22 (7)	6 (8)	6 (9)	8 (9)	27	11	198
C(4)	4016 (33)	-1731 (23)	278 (22)	47 (7)	17 (6)	24 (7)	4 (8)	15 (9)	9 (8)	7	27	33

Table 2. Atomic peak heights (e.Å⁻³), curvatures (e.Å⁻⁵) and e.s.d.'s

		Q	$-A_{hh}$	$-A_{kk}$	$-A_{ll}$	Aki	Ani	Ank
Ni	obs.	49·3	386	486	489	175	67	126
	calc.	51·0	387	485	489	175	66	126
S (1)	obs.	28·2	218	244	297	82	53	45
	calc.	28·7	220	244	296	82	53	45
S(2)	obs.	31·1	250	327	326	124	44	83
	calc.	31·5	251	325	324	122	44	82
N(1)	obs.	9·1	75	96	82	32	6	28
	calc.	9·4	76	95	81	32	7	28
N(2)	obs.	7·9	48	52	66	12	18	5
	calc.	7·9	48	52	65	12	18	5
N(3)	obs.	7·4	51	54	63	14	13	8
	calc.	7·8	51	56	65	18	12	8
C(1)	obs.	6·3	38	52	62	18	9	9
	calc.	6·6	39	52	62	18	9	10
C(2)	obs.	7·5	46	65	69	24	12	13
	calc.	7·5	46	65	69	24	12	13
C(3)	obs.	8·7	55	82	85	32	7	17
	calc.	9·1	55	82	85	32	7	17
C(4)	obs.	7·9	57	79	84	23	19	9
	calc.	8·1	57	78	84	22	19	9
	e.s.d.	0.3	2	2	3	2	2	1

Table 3. Observed and calculated structure factors

A minus sign for F_o means 'less than'

b 1	<u>k</u> 1	107 107c	h k 1	1070 107c	b k 1	10P 10Pc	h k 1	107, 10Fc	ь ч 1 -	10P 10Pc	h k 1	107 0 107 C	h k 1 107 ₀ 107 _c
12345 01122334455011223544550112235445501122254455011222544550112255445011225445011225454450112225455450112255450112255455011225545501122554550112255455011225545501122554550112255455011225545501112255455501112255455011122554550111225545501112255455011122554554550111225545501112255455011122554550111225545501112255455011122554550011122554550011122554550011122554550011122554550011122555450000000000		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} -27\\ 73\\ 70\\ 73\\ 70\\ 73\\ 70\\ 73\\ 70\\ 73\\ 70\\ 73\\ 70\\ 73\\ 70\\ 73\\ 70\\ 73\\ 70\\ 73\\ 70\\ 73\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3344445550011112223554445550011112222353445550011112222353445550011112222534455001111222344550111222344550112225445501122250455012 3544445550011112225534445550011112222353445550011112222534455500111122255445500111122255445501112225544550112255	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1 & 0 & 3 & 39 \\ 1 & 7 & 232 \\ 0 & 0 & 4 & 197 \\ 2 & 197 & 232 \\ 1 & 0 & 4 & 254 \\ 2 & 100 & 3 & 197 \\ 2 & 100 & 4 & 1281 \\ 1 & 300 & 4 & 1281 \\ 2 & 100 & 1 & 4 & 2243 \\ 2 & 130 & 122 \\ 3 & 0 & 4 & 1281 \\ 2 & 100 & 4 & 1281 \\ 3 & 100 & 4 & 1281 \\ 3 & 100 & 4 & 1281 \\ 3 & 100 & 4 & 1281 \\ 3 & 100 & 4 & 1281 \\ 3 & 100 & 4 & 1281 \\ 1 & 100 & 100 \\ 1 & 1 & 1 & 4 & 1281 \\ 1 & 100 & 100 \\ 1 & 1 & 1 & 4 & 1281 \\ 1 & 100 & 100 \\ 1 & 1 & 1 & 4 & 1281 \\ 1 & 100 & 100 \\ 1 & 1 & 1 & 4 & 1281 \\ 1 & 100 & 100 \\ 1 & 1 & 1 & 1181 \\ 1 & 100 & 100 \\ $

NARDELLI, GASPARRI, MUSATTI AND MANFREDOTTI

Table 3 (cont.)

- *************************************	
	k 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100 100
	b k 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	107 107
בי הוא מוצר המונה מואה מנור מושה מומו ממונה מיוח מיוח מיוח מיוח מואו או או מוא מוא מוא מיוח מיוח מיוח מיוח מיוח מסונה מנוני הוא היו היוח מנור מושה מושים מושים מואו או	h k 1
$ \begin{array}{c} 120 & 117 \\ 322 & -43 \\ 323 & -43 \\ 323 & -43 \\ 323 & -43 \\ 323 & -1 \\ 323 & -1 \\ 323 & -1 \\ 323 & -1 \\ 323 & -1 \\ 323 & -1 \\ 323 & -1 \\ 323 & -1 \\ 323 & -1 \\ 323 & -1 \\ 323 & -1 \\ 323 & -1 \\ 323 & -1 \\ 323 & -1 \\ 324 & -1 $	itor Itor
	2 X 1
$ \begin{array}{c} 10^{10} \mathbf{c} \\ 60^{10} \mathbf{c} \\ 61^{10} \mathbf{c} \\ 61$	10F_ 10F_
	E E 1 ,10
$ \begin{bmatrix} 0 & -7 & -7 & -5 & -2 & -7 & -5 & -2 & -7 & -5 & -2 & -7 & -5 & -2 & -7 & -5 & -2 & -5 & -2 & -5 & -2 & -5 & -2 & -5 & -2 & -5 & -2 & -5 & -2 & -2$	1.07
יום ביישו היום היום בישו היות היות היום היום במיום היום היום היום היום היום היום בישו היום בישו היום בישו היום היו היו היום היום היום מממפיפים מפור היום היום היום היום משימים ממימים או או היום היום היום או אויו או אויו או ה פעוטוס פעט פעט מטטטטט מיום היום משימים היום משימים מהיום משימים מיום משימים שוויים מאווי היום או אויו אויו אויו	E E 1
$ \begin{array}{c} 65 \\ 61 \\ 65 \\ 61 \\ 72 \\ 62 \\ 73 \\ 73 \\ 74 \\ 74 \\ 74 \\ 74 \\ 74 \\ 74$	107 107
	b k 1
$ \begin{array}{c} \mathbf{c} \mathbf{i} \\ \mathbf$	107 107

and only relatively small distortions are observed for the angles:

N(1)-Ni-S(1)	8 7·3(0·5)
S(1) - Ni - S(2')	98.6(0.2)
N(1)-Ni-S(2')	88.0(0.5)

The distances Ni-S for the two kinds of coordinated sulphur atom are not significantly different $[t_0 = (l_1 - l_2)]$ $\times (\sigma_1^2 + \sigma_2^2)^{-1} = 2.3$, significance test of Cruickshank & Robertson, 1953]. All these Ni-S distances are lower than the value (2.62 Å) found by Porai-Koshits (1959) in $Ni(NH_3)_3(NCS)_2$, but are significantly greater than either the sum of Pauling's covalent radii (2.43 Å) or the value (2.46 Å) found in Ni[SC(NH₂)₂]₄Cl₂ by Lopez-Castro & Truter (1963). As already observed (Cavalca, Nardelli & Fava, 1962; Lopez-Castro & Truter, 1963) these distances are much longer than those present in 4-coordinated diamagnetic nickel complexes which lie in the range 2.1-2.3 Å, e.g. 2.16 Å in bisthiosemicarbazidato-nickel (Cavalca, Nardelli & Fava, 1962), 2.16 Å in α -trans-bisthiosemicarbazide-nickel sulphate (Grønbæk & Rasmussen, 1962), 2.15 and 2.16 Å in the cis and trans configurations respectively of β -bisthiosemicarbazide-nickel sulphate (Grønbæk, 1963), 2·23 and 2.24 Å in nickel xanthate (Franzini, 1963), 2.21 and 2.20 Å in α -nickel bis(N.N-diethyldithiocarbamate) (Bonamico, Dessy, Mariani, Vaciago & Zambonelli, 1965), 2.20 and 2.21 Å in nickel bis(N,N-propyldithiocarbamate) (Peyronel & Pignedoli, 1966).

The Ni-N distances in both thiourea and thioimidazolidine compounds are amongst the lowest observed in octahedral nickel(II) complexes. This is seen from the values quoted in Table 4, in which distances for planar and tetrahedral complexes are also reported, for comparison.

It seems remarkable that in the octahedra of both thiourea and thioimidazolidine-nickel complexes, discussed in the present paper, the nitrogen atoms are trans with respect to the plane of the sulphur atoms; the octahedra are deformed to form flattened, nearly tetragonal bipyramids. The same occurs in bisthioacetamide-nickel(II) thiocyanate, in which the Ni atom is octahedrally surrounded by four S atoms from two thioacetamide molecules and two NCS groups, and by two N atoms from two NCS groups. In this compound too the NCS groups are in a bridging position and the nitrogen atoms are trans with respect to the plane of sulphur atoms, but the organic molecules are both on adjacent corners of the coordination polyhedron. The flattened bipyramid, therefore, seems to be the most stable arrangement for Ni²⁺ with the particular ligands involved, and is realized in different ways with different behaviour of NCS, probably in consequence of packing interactions concerning the organic molecules.

Distances and angles in the thioimidazolidine molecule are not significantly different from those found in the cadmium complex and in thioimidazolidine itself (Table 5). The thioimidazolidine molecule is not strictly planar and the distortion is of a different kind and is much greater than that observed when it is uncomplexed: in this case the S atom is 0.030 Å from the plane of the other atoms (Wheatley, 1953). In the nickel complex the planarity is observed only for the thiourea

Fig.1. Clinographic projection of a chain of coordination polyhedra.

Fig.2. Stereographic projection of the environment of S(1) viewed along S(1)-C(3) and showing the distortion of the ethylenic part of the molecule. The contacts are indicated with dotted lines; distances are in Å.

Table 4. Ni-N distances (Å) in Ni(II) complexes

Octahedral complexes

Bis-2-thioimidazolidine-Ni thiocyanate Bisthiourea-Ni thiocyanate	1·99 1·99	Present paper Nardelli, Fava Gasparri, Giraldi
Nitritobisethylenediamine-Ni tetrafluoroborate	2·10, 2·12 (en)	Battistini & Domiano (1966) Drew, Goodgame, Hitchman &
Districts $(N N N' N')$ totromothylathylangdiamina) Ni	2.09	Rogers (1903) Drew & Rogers (1965)
Bishistidino-Ni monohydrate	2.09, 2.11	Frazer, Long, Candlin & Harding
<i>B</i> -Alanine-Ni dihydrate	2.10	Jose, Pant & Biswas (1964)
Bis-meso-stilbenediamine-Ni dichloroacetate(blue form)	2.05	Nyburg & Wood (1964)
Trans-bisethylenediamine-Ni dithiocyanate	2.10 (amine), 2.15 (NCS)	Brown & Lingafelter (1963)
Bisethylenediamine-nitrito-Ni perchlorate	2.13, 2.17	Llewellyn & Waters (1962)
Bisethylenediamine-Ni chloride and bromide	2.0	Antsyshkina & Porai-Koshits (1962)
Trisethylenediamine-Ni nitrate	2.12	Swink & Atoji (1960)
Dihydrogenethylenediaminetetra-acetato-aquonickelate	2.08, 2.13	Smith & Hoard (1959)
Triamino-Ni dithiocyanate	2.06 (NCS), 2.07 (NH ₃)	Porai-Koshits (1959)
(2,2',2"-Triaminotriethylamine)-Ni dithiocyanate	2.13, 2.17, 2.19, 2.34 (tren) 2.02, 2.10 (NCS)	Rasmussen (1959)
Amino-Ni cyanide (hydrated)	2.10 (NH ₃), 2.11 (NC)	Rayner & Powell (1958)
Tetrapyridine-Ni dithiocyanate	2.03 (py), 2.12 (NCS)	Antsyshkina & Porai-Koshits (1958)
Tetrapyridine-Ni chloride	2.00	Porai-Koshits (1954)
Plana	r complexes	
Dichloro-1,4,8,11-tetra-azacyclotetradecane-Ni	2.05, 2.07	Bosnic, Mason, Pauling, Robert- son & Tobe (1965)
Tetraphenylporphine-Ni	1.96	Fleischer, Miller & Webb (1964)
Bis-meso-stilbenediamine-Ni dichloroacetate(vellow form)	1.89	Nyburg & Wood (1964)
Bisthiosemicarbazidato-Ni (red form)	1.91	Cavalca, Nardelli & Fava (1962)
Bisthiosemicarbazide-Ni sulphate (α form, trans)	1.90	Grønbæk & Rasmussen (1962)
Bisthiosemicarbazide-Ni sulphate (β form, <i>cis</i> and <i>trans</i>)	1.94	Grønbæk (1963)
Bismethylethylglyoximato-Ni	1.83, 1.88	Frasson & Panattoni (1960)
Bisdimethylglyoximato-Ni	1.85	Williams, Wohlauer & Rundle (1959)
Bissalicylaldiminato-Ni	1.84	Stewart & Lingafelter (1959)
Bis-(N-methylsalicylaldiminato)-Ni	1.90	Frasson, Panattoni & Sacconi (1959)
Bissalicylaldoximato-Ni	1.86	Merritt, Guare & Lessor (1956)
Phthalocyaninato analogue	1.90, 1.98	Speakman (1953)
Tetrahed	ral complexes	
Bis-(N-isopropylsalicylaldiminato)-Ni	1.95, 1.99	Fox, Orioli, Lingafelter & Sacconi (1964)

Table 5. Interatomic distances and angles in the 2-thiomidazolidine molecule and the nickel and cadmium thiocyanate complexes

		$Cdetu_2(NCS)_2$		
	$Nietu_2(NCS)_2$	Cavalca, Nardelli	etu	
	Present study	& Fava (1960)	Wheatley	y (1953)
S(1) - C(3)	1·70 (2) Å	1·74 (3) Å	1·708 Å `	1
C(3) - N(2)	1.31(2)	(1.32 (6)	(1.315	
C(3) - N(3)	1.32 (3)	1.30 (6)	1 ∙328	0.01 &
N(2)-C(2)	1.48 (3)	1.47 (4)	Ì 1·480	$\delta = 0.01 \text{ A}$
N(3)-C(1)	1.44 (3)	1.48 (4)) 1·461	
C(1)-C(2)	1.53 (3)	1.57 (7)	1.536	j
S(1) - C(3) - N(2)	123·4°(1·5°)	∫ 125·9°(2·4°)	∫ 123·5°)
S(1) - C(3) - N(3)	126.1 (1.4)	125.0 (2.3)) 126·2	
N(2)-C(3)-N(3)	110.4 (1.7)	109.1 (3.2)	`110·2	1
C(3) - N(2) - C(2)	111.8 (1.7)	∫ 114·2 (3·3)	∫ 112·8	$\sigma = 1.5^{\circ}$
C(3) - N(3) - C(1)	112.6 (1.8)	114.4 (3.2)	j 112·3	
N(3)-C(1)-C(2)	102.8 (1.9)	101.4 (2.9)	Ì 103·0]
N(2)-C(2)-C(1)	101.4 (1.7)	{ 100·9 (3·0)	Į 101·8	J

part, the least-squares equation of this part being $0.3039x' - 0.8911y' + 0.3371z' = 0.6484^*$.

The C(1) and C(2) atoms are out of this plane by -0.09 and +0.08 Å respectively. This distortion can be accounted for by the contacts involving the NH and CH₂ groups, as can be seen from the stereographic projection of Fig.2, in which the poles of the nearest atoms to a thioimidazolidine molecule are represented. The two NH groups are involved in hydrogen bonding with S atoms: the two distances $N(3) \cdots S(2')$, $3 \cdot 33(2)$ Å and $N(2) \cdots S(1'')$, 3.47(2) Å are consistent with the mean value of 3.40 Å suggested by Wallwork (1962) and fulfil the angular criterion for hydrogen bonding (Donohue, 1952; Fuller, 1959) (S(2')-N(3)-H, 14.3° and S(1'')-N(2)-H, $13\cdot 2^{\circ}$; the hydrogen atoms are in calculated positions). On the other hand the two CH_2 groups show the following van der Waals contacts: $C(1) \cdots S(1')$, 3.77(3) Å; $C(1) \cdots N(1''')$, 3.69(3) Å and $C(2) \cdots N(1^{iv}), 3.44(3) \text{ Å}; C(2) \cdots C(4^{iv}), 3.41(3) \text{ Å}.$ These are consistent with the sums of the van der Waals radii.

The molecules of thioimidazolidine are tilted with respect to the plane of sulphur atoms surrounding a nickel atom (Fig. 3) and the dihedral angle formed by

* Transformation matrix from triclinic x, y, z to orthogonal x', y', z' coordinates: 0 $\sin \alpha \cos \beta$

cos a

 $\sin \alpha \sin \beta^*$

sin y

cos y 1

Λ

Ω

this plane and that of S(1)C(3)N(2)N(3) is 72.9° , which is near to the corresponding angle (79.8°) in $Nitu_2(NCS)_2$. This is a consequence of the lack of collinearity of the Ni–S(1) and S(1)–C(3) bonds: the angle Ni-S(1)-C(3) is $116.9^{\circ}(0.6^{\circ})$, which is larger than the tetrahedral value for bonds involving sulphur. The resonance structure with a single S-C bond is most important ($\sim 80\%$), but the packing requirements already quoted can be responsible for the distortion.

Bond distances in NCS and the angle Ni-NCS are not significantly different from those found in $Nitu_2(NCS)_2$:

	$Nietu_2(NCS)_2$	$Nitu_2(NCS)_2$
N(1)-C(4)	1.16(3)	1·169(14) Å
C(4) - S(2)	1.64(2)	1.635(13)
Ni-N(1)-C(4)	162·1(1·7)°	$162 \cdot 2(1 \cdot 0)^{\circ}$

These N-C distances and Ni-NCS angles fit the curve calculated by Hazell (1963); this is in agreement with a description of the coordinated thiocyanate group in terms of the resonance structures

$$Ni-N \equiv C-S^-$$
 and $N=C=S$.

On the contrary, the S-C distance is shorter than that predicted from the curve S-C against Ni-NCS, as calculated by the same author; this fact, which is observed generally, suggests that other configurations, in addition to the one given previously, should be considered.

Fig. 3. Projection of the structure on a plane perpendicular to [100]. For clarity, the carbon itoms of the NCS groups are omitted.

The Ni-SCN, $100.7^{\circ}(0.7^{\circ})$, angle is near to those generally observed in bridged thiocyanate complexes, *e.g.* 102° in [Hg(SCN)₄][Cuen₂] (Scouloudi, 1953), 104° in AgSCN (Lindqvist, 1957), 109° in Cdetu₂(NCS)₂ (Cavalca, Nardelli & Fava, 1960), 110° in NH₄Ag(SCN)₂ (Lindqvist & Strandberg, 1957). The lack of collinearity in the NCS group [N(1)-C(4)-S(2)=178.6^{\circ}(1.2^{\circ})] is not significant.

The other packing distances (Fig. 4) less than 4 Å are given in Table 6.

Infrared spectra

In recent years there has been some interest in correlating the infrared spectra of the NCS group with its behaviour in metal complexes. Therefore, it seemed

Fig. 4. Packing in the unit cell.

Table 6. Interatomic distan	es less than 4	À in Ni[SC	$(NHCH_2)_2]_2(NCS)_2$
-----------------------------	----------------	------------	------------------------

	iv v	$ \begin{array}{l} x-1, \ y, \ z \\ 1-x, \ 1-y, \ 1-z \\ \bar{x}, \ \bar{y}, \ 1-z \\ x, \ y+1, \ z+1 \\ \bar{x}, \ \bar{y}, \ \bar{z} \end{array} $	$ \begin{array}{rcrr} vi & 1-x, \\ vii & x+1, \\ viii & \bar{x}, 1-1, \\ ix & 1-x, \\ x & \bar{x}-1, \\ \end{array} $	$ \vec{y}, \vec{z} y, z y, 1-z \vec{y}, 1-z \vec{y}, 1-z \vec{y}, 1-z $	
$\begin{array}{l} N(1) \cdots C(4^{vi}) \\ S(1) \cdots N(1) \\ S(2) \cdots N(1^{vii}) \\ S(1) \cdots S(2^{vi}) \\ S(1) \cdots S(2^{vi}) \\ S(2) \cdots N(1^{vi}) \\ C(4) \cdots C(1^{''}) \\ S(1) \cdots C(4^{vi}) \\ N(3) \cdots C(4') \end{array}$	$\begin{array}{c} 2.97 & (3) \\ 3.13 & (2) \\ 3.17 & (3) \\ 3.27 & (2) \\ 3.29 & (1) \\ 3.29 & (3) \\ 3.52 & (3) \\ 3.56 & (2) \\ 3.62 & (3) \end{array}$	$\begin{array}{c} S(2) \cdots C(2^{ix}) \\ N(2) \cdots C(4^{iv}) \\ N(3) \cdots C(1^{x}) \\ N(3) \cdots S(1') \\ N(1) \cdots C(3^{v}) \\ S(1) \cdots S(2') \\ N(1) \cdots N(3^{v}) \\ S(2) \cdots N(2^{ix}) \\ N(3) \cdots N(3'') \end{array}$	3.67 (3) 3.70 (3) 3.71 (4) 3.78 (3) 3.81 (2) 3.83 (2) 3.84 (3) 3.85 (3) 3.85 (3)	$\begin{array}{c} S(2) \cdots C(1''') \\ C(2) \cdots C(4'') \\ S(2) \cdots C(4^{v1}) \\ N(1) \cdots S(2^{1v}) \\ C(2) \cdots N(1''') \\ N(1) \cdots C(3^{v1i1}) \\ S(2) \cdots C(3^{v1i1}) \\ S(1) \cdots C(2^{v1i1}) \\ N(2) \cdots N(1^{1v}) \end{array}$	3.86 (3) 3.87 (3) 3.92 (4) 3.92 (2) 3.93 (3) 3.94 (3) 3.95 (2) 3.96 (4) 3.98 (3)

worth while to examine the infrared spectra of the compound described in this paper and of those closely related to it. The frequencies corresponding to the symmetric (v_1) , and antisymmetric (v_3) vibrational modes of NCS group are shown in Table 7, in which the same frequencies for KSCN (Jones, 1958) are also reported for comparison. These spectra were measured with a Perkin-Elmer model 125 spectrophotometer in Nujol suspensions. While the v_1 band is weak, the v_3 band is always strong and frequently shows a multiplicity which is not indicated in Table 7 and is of no interest for the following discussion.

Table 7. Infrared frequencies (cm^{-1}) of the thiocyanate group in related metal complexes

Compound	C-N stretching (NCS antisymmetric)	C-S stretching (NCS symmetric)
	<i>v</i> ₃	<i>v</i> ₁
Mnetu ₂ (NCS) ₂	2103	780
$Coetu_2(NCS)_2$	2113	787
Nietu ₂ (NCS) ₂	2128	777
$Cdetu_2(NCS)_2$	2064	763
$Pbetu_2(NCS)_2$	2059	742
Nitam ₂ (NCS) ₂	2113	782
$Nitu_2(NCS)_2$	2088	812
KNCS	2053	749

There is a small but sensible increase of the v_3 frequency in the order Mn < Co < Ni for the isostructural Mn, Co and Ni *etu* complexes which give very similar spectra. In the same order a decrease in v_1 would be expected, but this is only observed in going from the Co to the Ni complex.

For all the complexes examined, except the Cd and Pb compounds, the rule is verified that the C=N stretching frequency in a bridging is higher than in a terminal thiocyanate group (Chatt & Duncanson, 1956; Mitchell & Williams, 1960). The values for the v_1 frequency are intermediate between the ranges observed for thiocyanates (690–720 cm⁻¹) and isothiocyanates (780–860 cm⁻¹) (Pecile, Giacometti & Turco, 1960; Lewis, Nyholm & Smith, 1961). The frequencies for Nitam₂(NCS)₂ are in quite good agreement with the bridge structure present in that compound.

The two frequencies v_3 and v_1 in the isostructural Cd and Pb complexes, in which NCS bridges are present, are rather near to those of KSCN, and this is in agreement with a prevailing ionic character of the NCS group in these two compounds. This is also indicated by the rather high values of the distances M-S and M-N in the Cd compound (Cd-S, 2.73; Cd-N, 2.53 Å).

All the calculations were performed on the Olivetti Elea 6001/S computer of the Centro di Calcolo Elettronico della Università di Parma with the programs of Nardelli, Musatti, Domiano & Andreetti (1964, 1965). This work was done with the financial support

of the Consiglio Nazionale delle Ricerche (Roma). The authors are indebted to Dr E. Pauluzzi (SNAM Progetti) who kindly recorded and interpreted the infrared spectra.

References

- AHMED, F. R. & CRUICKSHANK, D. W. J. (1953). Acta Cryst. 6, 385.
- ANTSYSHKINA, A. S. & PORAI-KOSHITS, M. A. (1958). Krystallografija (Amer. transl.) 3, 684.
- ANTSYSHKINA, A. S. & PORAI-KOSHITS, M. A. (1962). Doklady Akad. Nauk SSSR, 143, 105.
- BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOPSTRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A. L. (1955). *Acta Cryst.* 8, 478.
- BONAMICO, M., DESSY, G., MARIANI, C., VACIAGO, A., ZAM-BONELLI, L. (1965). Acta Cryst. 19, 619.
- BOSNICH, B., MASON, R., PAULING, P. J., ROBERTSON, G. B. & TOBE, M. L. (1965). *Chem. Comm.* p. 97.
- BROWN, B. W. & LINGAFELTER, F. C. (1963). Acta Cryst. 16, 753.
- CAVALCA, L., NARDELLI, M. & FAVA, G. (1960). Acta Cryst. 13, 125.
- CAVALCA, L., NARDELLI, M. & FAVA, G. (1962). Acta Cryst. 15, 1139.
- CHATT, J. & DUNCANSON, L. A. (1956). Nature, Lond. 178, 997.
- CRUICKSHANK, D. W. J. (1949). Acta Cryst. 2, 65.
- CRUICKSHANK, D. W. J. & ROBERTSON, A. P. (1953). Acta Cryst. 6, 698.
- DARLOW, S. F. (1960). Acta Cryst. 13, 683.
- DARLOW, S. F. & COCHRAN, W. (1961). Acta Cryst. 14, 1250.
- DAWSON, B. (1960). Acta Cryst. 13, 403.
- DONOHUE, J. (1952). J. Phys. Chem. 56, 502.
- DREW, M. G. B., GOODGAME, D. M. L., HITCHMAN, M. A. & ROGERS, D. (1965). *Chem. Comm.* p. 477.
- DREW, M. G. B. & ROGERS, D. (1965). Chem. Comm. p. 476.
- FLEISCHER, E. B., MILLER, C. K. & WEBB, L. E. (1964). J. Amer. Chem. Soc. 86, 2342.
- Fox, M. R., ORIOLI, P. L., LINGAFELTER, E. C. & SACCONI, L. (1964). *Acta Cryst.* 17, 1159.
- FRANZINI, M. (1963). Z. Kristallogr. 118, 393.
- FRASSON, E. & PANATTONI, C. (1960). Acta Cryst. 13, 893.
- FRASSON, E., PANATTONI, C. & SACCONI, L. (1959). J. Phys. Chem. 63, 1908.
- FRAZER, K. A., LONG, H. A., CANDLIN, R., HARDING, M. M. (1965). *Chem. Comm.* p. 344.
- FULLER, W. (1959). J. Phys. Chem. 63, 1705.
- GRØNBÆK, R. (1963). Acta Cryst. 16, A65, and private communication.
- GRØNBÆK, R. & RASMUSSEN, S. E. (1962). Acta Chem. Scand. 16, 2325.
- HAZELL, A. C. (1963). J. Chem. Soc. p. 5745.
- JONES, L. H. (1958). J. Chem. Phys. 28, 1234.
- JOSE, P., PANT, L. M. & BISWAS, A. B. (1964). Acta Cryst. 17, 24.
- LEWIS, J., NYHOLM, R. S. & SMITH, P. W. (1961). J. Chem. Soc. p. 4590.
- LINDQVIST, I. (1957). Acta Cryst. 10, 29.
- LINDQVIST, I. & STRANDBERG, B. (1957). Acta Cryst. 10, 173.
- LLEWELLYN, F. J. & WATERS, J. M. (1962). J. Chem. Soc. p. 3845.
- LOPEZ-CASTRO, A. & TRUTER, M. R. (1963). J. Chem. Soc. p. 1309.

- MERRITT, JR., L. L., GUARE, C. & LESSOR, JR., A. E. (1956). Acta Cryst. 9, 253.
- MITCHELL, P. C. H. & WILLIAMS, R. J. P. (1960). J. Chem. Soc. p. 1912.
- NARDELLI, M. & CHIERICI, I. (1958). Gazz. chim. ital. 88, 248.

NARDELLI, M. & FAVA, G. (1960). Ric. Sci. 30, 898.

- NARDELLI, M., FAVA GASPARRI, G., GIRALDI BATTISTINI, G. & DOMIANO, P. (1966). Acta Cryst. 20, 349.
- NARDELLI, M., MUSATTI, A., DOMIANO, P. & ANDREETTI, G. (1964). *Ric. Sci.* 34, II-A, 711.
- NARDELLI, M., MUSATTI, A., DOMIANO, P. & ANDREETTI, G. (1965). *Ric. Sci.* 35, II-A, 469, 477 & 807.
- NYBURG, S. C. & WOOD, J. S. (1964). Inorg. Chem. 3, 468.
- PECILE, C., GIACOMETTI, G. & TURCO, A. (1960). Rend. Accad. Lincei, VIII, 28, 189.
- PEYRONEL, G. & PIGNEDOLI, A. (1966). Private communication.

PHILLIPS, D. C. (1956). Acta Cryst. 9, 819.

- PORAI-KOSHITS, M. A. (1954). Trudy Inst. Krist. Akad. Nauk SSSR, 10, 117.
- PORAI-KOSHITS, M. A. (1959). Zh. Neorg. Khim. 4, 730.
- RASMUSSEN, S. E. (1959). Acta Chem. Scand. 13, 2009.
- RAYNER, J. H. & POWELL, H. M. (1958). J. Amer. Chem. Soc. 80, 3412.
- SCOULOUDI, H. (1953). Acta Cryst. 6, 651.
- SMITH, G. S. & HOARD, J. L. (1959). J. Amer. Chem. Soc. 81, 556.
- SPEAKMAN, J. C. (1953). Acta Cryst. 6, 784.
- STEWART, J. M. & LINGAFELTER, E. C. (1959). Acta Cryst. 12, 842.
- SWINK, L. N. & ATOJI, M. (1960). Acta Cryst. 13, 639.
- THOMAS, L. H. & UMEDA, K. (1957). J. Chem. Phys. 26, 293.
- WALLWORK, S. C. (1962). Acta Cryst. 15, 758.
- WHEATLEY, P. (1953). Acta Cryst. 6, 369.
- WILLIAMS, D. E., WOHLAUER, G. & RUNDLE, R. E. (1959). J. Amer. Chem. Soc. 81, 755.

Acta Cryst. (1966). 21, 919

The Crystal Structure of Zinc Ethylxanthate

By Takuro Ikeda

Electrical Communication Laboratory, Musashino, Tokyo, Japan

and Hitosi Hagihara

The Institute of Physical and Chemical Research, Komagome, Bunkyo-ku, Tokyo, Japan

(Received 19 April 1966)

Zinc ethylxanthate, Zn(SSCOC₂H₅)₂, is monoclinic with $a=18\cdot278\pm0.014$, $b=5\cdot700\pm0.003$, $c=11\cdot381\pm0.012$ Å; $\beta=101\cdot47^{\circ}\pm0.10^{\circ}$, and space group $P2_1/c$. The unit cell contains four formula units. A three-dimensional X-ray structure analysis has shown that each zinc atom is tetrahedrally coordinated to four sulphur atoms belonging to different xanthate groups at distances $2\cdot362$, $2\cdot337$, $2\cdot364$ and $2\cdot369$ Å, all approximately within ± 0.010 Å. The bonds are directed to the corners of a slightly distorted tetrahedron. Each xanthate group, in turn, bridges two zinc atoms with its dithio-carbonic end in the y- or z-axis direction to complete a two-dimensional network consisting of the

zinc atoms and -S-C-S- atom groups. Zn-S-C bond angles are 104.9, 105.1, 105.5 and 114.8°, all $\pm 1.0^{\circ}$. The xanthate group is almost planar. The ethyl group, bonded with the dithiocarbonic carbon atom through an oxygen atom, protrudes on both sides of the network in the $\pm x$ -axis direction. The methyl ends of the ethyl groups belonging to successive sheets of the two-dimensional network come into van der Waals contact through twofold screw axes.

Introduction

In the technical process of froth flotation, sulphide minerals are separated from the gangue minerals or from each other by their difference in wettability by water. With the galena(PbS)-zincblende(ZnS) system, for instance, their separation is made possible by soaking the powders in aqueous ethylxanthate solution. Galena reacts readily with the solution to develop a hydrophobic property on its surface, while zincblende remains hydrophilic in the same solution. In order to make the zincblende surface sufficiently hydrophobic for the purpose, a pretreatment of its particles with a dilute aqueous solution containing Cu^{2+} ion is necessary before the reaction with xanthate solution. Cu^{2+} ions in the solution activate the zincblende surface, while Zn²⁺ ions do not.

In these reactions it is supposed that a small amount of heavy metal cations, either dissolved from the mineral surfaces or added purposely to the solution, reacts with xanthate anions to produce molecular or crystalline aggregates of the heavy metal xanthate at the mineral surface. The above mentioned behavior of galena and activated zincblende in the xanthate solution suggests that the formation of a molecular or crystalline aggregate of lead and copper xanthates at mineral surfaces is effective for endowing galena and zincblende surfaces respectively with the hydrophobic property, while the formation of similar aggregates of zinc xanthate has no such effect on zincblende surfaces. In order to elucidate these differences from the viewpoint of the molecular and crystalline structure of heavy metal xanthates, it was decided to determine the crystal structure of zinc ethylxanthate, $Zn(SSCOC_2H_5)_2$,